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ABSTRACT
The present paper shows how to modify the Kreiss-Oliger
2-4 two-dimensional Leap-Frog scheme so that the allowable
time step may be doubled, while the computational complexity

remains about the same.
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1. Introduction

In a previous communication [1l] (see also [2]), it was
shown how the standard multi-dimensional leap-frog finite
difference method for solving linear and quasi-linear systems
of partial differential equations can be modified so that the
stability condition is substantially improved. 1In particular,
it was shown that in the two-dimensional case one can double
the time step. The required change in the algorithm is simple
to implement, and the resulting modified leap-frog (MLF) algo-
rithm remains convenient to program and requires no more flux
vector evaluations than the original leap-frog scheme.

Recently the question arose whether a similar improvement
can be achieved for the Kreiss-Qliger 2-4 scheme [3], which is
second order accurate in time and has a fourth order spatial
accuracy. This scheme is widely used in meteorology and global
circulation studies. 1Its explicitness imposes, of course,

a priori restrictions on the time steps and attempts have been
made [4] to improve running times by resorting to implicit 2-4
methods {5]. Improvements of a factor of 2 in machine time have
been reported, [4]. In this paper we show how a similar improve-~
ment may be obtained by modifying the explicit 2-4 scheme in a
manner analogous to that reported in [1].

Here we are considering the hyperbelic system
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where u, F(u), and G(u) are m component vectors and where

A and B are the Jacobians of F and G with respect to u.
The 2-4 Kreiss-Oliger finite difference scheme is the

following:
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The second term in each of the square brackets serves as a ''correc
tion" term to the regular 2-2 leap-frog method and modifies it

into a 2-4 scheme, i.e. second order accurate in time and fourth
order accurate spatially. The initial value (linear) stability

condition for algorithm (1.2) is:

1
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(1.3)

where p(A) and p(B) are, respectively, the spectral radii of
the coefficient matrices A = A(u) = 3F/3u, B = B(u) = 8G/0du,
which are assumed to be simultaneously symmetrizable. The factor

D equals 1.372 (=£((3/8)/%), see (2.6).).
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We now seek to modify (1.2) in order to improve (1.3). The
best we can hope for is to achieve the one-dimensional stability

conditions, namely

(1.4)

2. The Modified Scheme and its Stability

If we introduce the differencing and averaging operators,

respectively,
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then the scheme (1.2) takes the form
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Hext we review briefly how one establishes the stability limits of

(2.1); this will facilitate the treatment of the modified algorithm

to be introduced later. If we define a new vector

who = , (2.2)




then the linearized version of the two level finite difference

equations (2.1) becomes the following single level system
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where Ax = AAt/Ax, Ay = BAt/Ay. Fourier transforming (2.4) we ger

the following amplification matrix
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where

£(z) = 2z/1-2° (1+§az>, 1<zc<l, (2.6)

and o = sin(&/2), B sin(n/2); & and n being the dual Fourier
variables of the space coordinates x and y-
It may be shown that the stability requirement for M is equi-

valent to demanding that

p(C) < 1, (2.7)
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p(C) being the spectral radius of C = A(At/ax)f(a) +

B( t/ y)f( ). We then get

At < 1 , (2.8)

[(p(A)/bx) + (p(B)/Ay)ID

where D = max|f(z)| = #(3/8)%) = 1.372. (2.9)

The most general modification of (2.1) which maintains the
fourth order spatial accuracy and still leaves the algorithm with

a compact 5x5 grid.support (j*2, k*2) is:

n+l _ n-1 1.2 y.2.2 .4 v.2.4..0
uiTe = Uyt 2088/000u,6,(1- 362 - el - s - a2yt |
+ 2(At/Ay)uysy(1-l<52 L5 6. -S4 Vs 5 6P

6y 16y x 16 x 64°y°x’“j,k

The amplification matrix again has the form
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where now
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The stability requirement becomes

2
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For optimal stability it is required that in contradistinction to
(2.8), p(AX) ¢ 1/D and p(Ay) § 1/D. We ask whether under these
constraints there indeed exists a triplet (y,e,v) such that
inequality (2.11) is still valid Vv |a|,|8] < 1. It can be shown
that if any member of the triplet (y,e,v) vanishes one cannof
get the stipulated optimal stability, (1.4). We found no analyti-
cal way to determine a stabilizing triplet. However, we verified

numerically that the convenient triplet
Y = 8, € = 8/3, v = 32/3,
is appropriate in that it leaves the inequality (2.11) valid under

the stipulated optimal stability conditions, eq. (1.4).

Thus, the modified Kreiss-Oliger 2-4 leap-frog scheme takes

the form
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Writing out explicitly the effect of the differencing and averag-

ing operators §_ 6

< y’ux’uy’ equation (2.12) becomes:
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If we want to emphasize the "modifying" terms which were added to

the regular 2-4 scheme we may rewrite (2.13) as follows:

(2.1
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Note that even though (2.13) and (2.14) lock much more com-
Plex than (1.2) one still realizes the benefit of the increased
stable time step. This 1is true when the flux vectors evaluation is
costly in terms of machine time, because all the additional fluxes
have already been computed at the neighboring points. This can be

best seen by defining the following vectors
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In terms of u and u we can construct a different version of the

modified 2-4 scheme so that it takes the same form as the standard

one (1.2), namely
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Gj x = G(uj k). From (2.15) one can show that (2.16) is equival-
b b

ent to (2.13) (or (2.14)) to fourth order in space in the nonlinear
case. The stability of (2.16) is the same as that of (2.14) since
for linear problems they are identical.: Notice that the number of

flux evaluation is now the same for the modified and the standard
n n
* %
2-4 schemes. The dependent vectors uj k and u. x are evaluated

in terms of the neighboring points using only additions of u®.  In

particular:
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Notice that from a computational point of view, (2.17) and (2.18)
can be carried out by observing that certain neighboring points
keep appearing together and therefore can be lumped together to
reduce the number of additions hence making for a more efficient

programming.
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